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g-Factors of Discrete Levels in Nanoparticles

K. A. Matveev,1 L. I. Glazman,2 and A. I. Larkin2,3

1Department of Physics, Duke University, Durham, North Carolina 27708-0305
2Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

3L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
(Received 24 January 2000)

Spin-orbit scattering suppresses Zeeman splitting of individual energy levels in small metal particles.
This suppression becomes significant when the spin-orbit scattering rate t21

so is comparable to the quan-
tum level spacing d. At small dtso the g-factor exhibits strong mesoscopic fluctuations. We find the
shape of their distribution function using the random matrix theory, and express its parameters in terms
of physical characteristics: tso, d, the electron mean free path l, and the particle size L. At dtso ! 0
the average g-factor levels off at a small value g � �l�L�1�2. However, in 2D quantum dots the g-factor
is strongly enhanced by spin-orbit coupling.

PACS numbers: 71.24.+q, 71.70.Ej, 73.23.Hk
In bulk metals the spin-orbit interaction is known to
result in relatively weak corrections to the g-factors of
electrons [1]. For instance, in aluminum the g-factor is
indistinguishable from the nominal value of 2, and in bulk
gold g � 2.1. However, recent experiments with nanopar-
ticles found much smaller values of g. Measurements of
the level splitting induced by magnetic field in Al grains [2]
yielded g � 1.7. Adding to these grains of only 4% of Au
resulted in the drop of g down to �0.7. In Au nanopar-
ticles the value g � 0.3 was observed [3]. The lowest-
order perturbation theory [1,4] in the strength of spin-orbit
scattering enables one to analyze [2] small deviations of the
g-factor in a nanoparticle from the nominal value g � 2.
In this paper we develop a theory of the g-factor in the
regime when it is strongly affected by spin-orbit scatter-
ing, which was the case in experiments [2,3].

In bulk materials the g-factor is conventionally deter-
mined from the electron spin resonance (ESR) data. ESR
involves transitions between states of the electron contin-
uum. However, the experiments with nanoparticles [2,3]
study the Zeeman splitting of individual electron levels ei :

eis�H� � ei 6
1
2 gimBH . (1)

Here H is the magnetic field, mB � eh̄�2mc is Bohr mag-
neton, and m is the free electron mass. The splitting (1)
is linear in H as long as it is small compared to the quan-
tum level spacing d. The g-factor determined by Eq. (1),
in general, varies from level to level. In the absence of
spin-orbit interaction, gi � 2. Evidently [2,3] the spin-
orbit scattering affects the values of gi .

Unlike its bulk value, the g-factor defined by Eq. (1)
is very sensitive to even weak spin-orbit interaction. The
reason is that the magnitude of the correction to g � 2
value, measured by ESR in the bulk, is determined by
the comparison of spin-orbit interaction to the typical
electron bandwidth, whereas the relevant energy scale for
g-factors of individual levels is the quantum level spacing
d. Indeed, the spin-orbit interaction is usually described
by the mean time of spin-orbit scattering tso. The scatter-
0031-9007�00�85(13)�2789(4)$15.00
ing time should be compared with the time �1�d that an
electron travels along a closed trajectory corresponding to
a quantum level. At dtso ¿ 1 the electron spin flips very
infrequently, and the effect of the spin-orbit scattering is
weak. However, at dtso ø 1 the spin flips the average of
N � 1�dtso times during the electron motion along the
closed trajectory. Thus the average spin in such a quantum
state is significantly less than 1�2, and the response (1)
to the magnetic field is strongly suppressed. The g-factor
of this level can be estimated by assuming that electron
spin-flips occur at random moments in time. The root-
mean-square value of the spin is then 1�

p
N , resulting in

gi � g0
p

dtso. Here g0 is the bulk value of the g-factor,
determined by the band structure of the material; g0 � 2
for free electrons.

The above estimate accounts only for the spin contribu-
tion to the g-factor. In fact, the level splitting in a mag-
netic field is determined by the total magnetic moment of
the state

�M�i � �Morb
z �i 1 �Msp

z �i . (2)

Here Morb � �e�2c� �r 3 v	 and Msp � g0mBs are the
orbital and spin magnetic moments; r, v , and s are the
operators of position, velocity, and spin of the electron, re-
spectively. The brackets �· · ·�i denote the expectation value
in the ith eigenstate of an electron confined to a nanopar-
ticle in an infinitesimal magnetic field in z direction. In a
nanoparticle of a generic shape, the orbital levels are not
degenerate. Then in the absence of the spin-orbit interac-
tion the time reversal symmetry dictates ��r 3 v	z�i � 0
at H ! 0, although the variance ��r 3 v	2

z�i fi 0. It is im-
portant to note that in the presence of spin-orbit interaction
��r 3 v	z�i fi 0, and the orbital motion contributes to the
splitting of levels by the magnetic field [5].

In the presence of strong spin-orbit coupling, dtso ø
1, one can estimate ��r 3 v	z�i as the root-mean-square
value

p
��r 3 v	2

z�i � jAjd calculated without accounting
for that coupling; here A is the (directed) area covered
by a trajectory corresponding to level i. To find A we
© 2000 The American Physical Society 2789
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notice that during time 1�ET the electron travels across
the grain and, therefore, covers the area �L2. (Here ET �
D�L2 is the Thouless energy, L is the grain size, and D is
the diffusion constant for electrons in the grain.) During
the period of motion 1�d the electron bounces off the
boundaries �ET �d times. Since the direction of motion
after each bounce is random, the total directed area is jAj �
L2

p
ET �d. Consequently, the orbital magnetic moment of

a given state can be estimated as

�Morb
z �i �

eh̄
c

L
p

Dd �
eh̄

cm�
3

Ω p
l�L, 3D ,p
kFl, 2D .

(3)

Here l is the transport mean free path of electrons, kF

is their Fermi wave vector, and m� is of the order of the
effective mass derived from the density of states of a bulk
material.

One can also see from Eq. (3) that in a three-
dimensional (3D) nanoparticle the orbital contribution to
the g-factor is small, gorb

i �
p

l�L ø 1. However, in
the case of strong spin-orbit scattering, dtso ø 1, the
above estimated spin contribution is also small, g

sp
i �g0 �p

dtso ø 1. Therefore in this regime both contributions
may have to be taken into account.

We will now show that at dtso ø 1 the g-factor of a
level is a random quantity with the distribution function

P�g� � 3

s
6
p

g2

��g2��3�2 exp

√
2

3g2

2��g2��

!
, (4)

where the averaging ��· · ·�� is performed either over an
ensemble of 3D nanoparticles or over different levels in
a single nanoparticle. Furthermore, we express ��g2�� in
terms of two quantities, tso and l, which can be measured
independently:

��g2�� �
3g2

0

2p h̄
dtso 1 a

l
L

. (5)

Here the dimensionless constant a is determined by the
geometry of the nanoparticle; its exact value will be dis-
cussed later. Equations (4) and (5) are the main result of
this paper.

We begin the study of the g-factors of individual levels
by finding a relation between gi and the matrix elements
of the operator of magnetic moment M. Because of the
time reversal symmetry, the levels in the nanoparticle are
degenerate, with the wave functions jci� and jTci�, where
T stands for the time reversal operator. In a weak mag-
netic field H the levels are split by the perturbation MH.
By using the standard method of degenerate perturbation
theory, one can easily find the splitting in the form (1) with
the g-factor

gi � 2
j �mj

mB
, (6)

where the real vector �m is defined as

mx 1 imy � �TcijMjci�, mz � �cijMjci� . (7)

The distribution function p� �m� is, by definition,
2790
p� �m� �
Z d3l

�2p�3 ei �l? �m��exp�2ilxRe�TcijMjci�

2 ilyIm�TcijMjci�
2 ilz�cijMjci���� . (8)

To perform the averaging in Eq. (8), we use the random
matrix theory (RMT) approach [6]. Instead of the en-
semble of nanoparticles with strong spin-orbit scattering
we will consider an ensemble of symplectic matrices of
size 2N 3 2N with N ¿ 1. Then the eigenfunctions �cj
and �Tcj of the Hamiltonian are N-component spinors:

�cj � �
f�
k , x�

k ��, �Tcj � �
2xk , fk�� . (9)

The operator of magnetic moment M is a Hermitian
matrix, which due to its time reversal properties can
be diagonalized to the form diag
M1, 2M1, . . . , Mk ,
2Mk , . . . , MN , 2MN �. In the basis of the eigenfunctions
of M the matrix elements (7) take the form

�cjMjc� �
NX

k�1

Mk�jfkj
2 2 jxkj

2� , (10)

�TcjMjc� � 22
NX

k�1

Mkfkxk . (11)

The advantage of the RMT approach is that the ensemble
averaging in Eq. (8) is easily performed using the Porter-
Thomas distribution [6] of the matrix elements:

��· · ·�� �
Z NY

k�1

d2fkd2xk

�p�2N�2 e22N�jfk j
21jxk j

2� · · · . (12)

The averaging in Eq. (8) with the help of (10)–(12) re-
duces to the calculation of N identical quadruple Gaussian
integrals. The result has the form

p� �m� �
Z d3l

�2p�3 ei �l? �m
NY

k�1

√
1 1

j �lj2M2
k

�2N�2

!
21

. (13)

In the limit of large N ¿ 1, this integral becomes Gauss-
ian also, and we find

p� �m� �

µ
2N2

pTrM2

∂3�2

exp

µ
2

2N2

TrM2 j �mj2
∂

. (14)

Taking into account the relation (6), we now immediately
find the distribution function of the g-factor in the form
(4) with the mean square g defined as

��g2�� �
3

m
2
B

TrM2

N2 . (15)

As a phenomenological theory, RMT enabled us to find
the functional form of the distribution function; however,
the width of the distribution (15) is now expressed in terms
of a phenomenological parameter TrM2�N2. The relation
between this parameter and the microscopic properties of
the system cannot be established within the RMT. To do
this, one has to find an observable quantity Q which can
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be evaluated within both the phenomenological RMT and
a microscopic theory.

We choose Q to be the energy absorbed in unit time
from a weak external ac magnetic field H�t� � H0 cosvt.
Such a field induces transitions between quantum levels in
the grain, leading to the absorption of the energy in the
grain. Within the RMT, the absorption can be found with
the help of the Fermi golden rule as
Q �

**
2p

X
k#kf,p

Ç
1
2

H0�ckjMjcp�
Ç2

d�v 1 ek 2 ep�

++
v . (16)
The expression inside ��· · ·�� is the rate of absorption of
quanta of radiation interacting with the system. The ab-
sorption occurs due to the transitions from occupied states
with k # kf to the empty states, p . kf , and are induced
by the term 1

2 H0Me2ivt in the corresponding coupling
Hamiltonian.

In RMT the energy levels and the eigenfunctions are un-
correlated, i.e., the averaging over the energy levels and
matrix elements in Eq. (16) can be performed indepen-
dently. Also, at v ¿ d, one can neglect the correlations
of the densities of states at energies separated by v, and
we find

Q �
pv2H2

0

2d2 ��jMkp j
2�� . (17)

It is important to note that contrary to the above calculation
of the g-factors of individual levels [Eqs. (6) and (7)],
here the matrix elements Mkp are between eigenstates with
different energies. Upon averaging over the ensemble,
��jMkp j

2�� becomes independent of k and p. Its magnitude
can be found by presenting the invariant TrM2 as a sum of
��jMkp j

2�� over all 2N values of k and p. Since the number
of diagonal matrix elements 2N is small compared to the
number of the off-diagonal ones, 4N2 2 2N , we conclude
that ��jMkpj

2�� � TrM2�4N2 at N ¿ 1. By combining
this relation with Eqs. (17) and (15), we find

��g2�� �
24d2

p h̄v2�mBH0�2 Q . (18)

It is noteworthy that this result, obtained within the RMT,
contains no phenomenological parameters. It establishes
a relationship between the property of a single level, the
g-factor, and a macroscopic quantity Q insensitive to the
effects of discreteness of levels.

To evaluate the absorption rate Q for a given nanopar-
ticle, it is convenient to express it as Q � 1

2 vA00H2
0 in

terms of the imaginary part A00 of the zz component of the
tensor of magnetic polarizability of the sample Aik , defined
as Mi � AikHk , (Ref. [7]). Then the result for the mean
square g-factor takes the form

��g2�� �
12d2

p h̄m
2
B

A00�v�
v

. (19)

It is well known [7] that at v ! 0 the imaginary part of
the polarizability vanishes as A00�v� ~ v.

Since M � Morb
z 1 M

sp
z , one can distinguish between

the orbital and spin contributions to the magnetic polariz-
ability of the nanoparticle. The spin contribution has the
form
As�v� �
m

2
Bg2

0

4d

1
1 2 ivtso�2

. (20)

Here the first factor is the usual static Pauli susceptibil-
ity of the electron gas of the nanoparticle, and the second
one accounts for the fact that spin correlations decay ex-
ponentially with the time constant tso�2. Substituting the
imaginary part of the polarizability (20) into (19), we re-
produce the first term of our main result (5).

The orbital contribution to the magnetic polarizability is
due to the magnetic moment of the eddy currents generated
in the sample by the ac magnetic field. For a particle of a
shape symmetrical with respect to the rotations around the
z axis, one can easily find

A00 �
vs

4c2 r
2
�V , v ! 0 . (21)

Here s is the conductivity of the metal, V is the volume of
the nanoparticle, and r

2
� is the “moment of inertia” of the

grain, assuming unit density. For a spherical nanoparticle
of radius L the combination of Eqs. (19) and (21) repro-
duces the second term in Eq. (5) with a � �6�5� �m�m��2.

For the thin ring geometry, Eqs. (19) and (21) result in
��g2�� � 3m2L2Dd�p3h̄3, where L stands for the circum-
ference of the ring. In the context of the persistent current
problem the orbital effect of magnetic field on the split-
ting of the energy levels was studied earlier by Kravtsov
and Zirnbauer [5]. They used the nonlinear s-model tech-
niques [8] to solve the general problem of crossover from
the symplectic ensemble to the unitary one. A special lim-
iting case of that solution gave rise to a distribution func-
tion of level splittings, which reassuringly coincides with
our result for the thin ring geometry. Phenomenologically
the crossover problem was solved within RMT by Mehta
and Pandey [9]. Our approach enables one to express their
phenomenological crossover parameter to physical observ-
ables without resorting to s-model calculations.

In the case of weak spin-orbit interaction, dtso ¿ 1, the
correction to the average g-factor is small and can be found
by perturbation theory. In the lowest-order perturbation
theory in spin-orbit coupling, one finds [1]

gi�g0 � 1 2
h̄d

ptso

X
jfii

1
�ei 2 ej�2 . (22)

Assuming that the energy levels ej are equidistant, the sum
(22) was evaluated by Kawabata [4]. However, in a dis-
ordered system the Wigner-Dyson statistics of the energy
levels is a more realistic assumption. In this case one of
2791
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FIG. 1. Sketch of the dependence of the average g-factor on
the strength of spin-orbit scattering (see text). We assumed
m��m � 1 in this plot.

the levels j can be close to level i, resulting in a particu-
larly large correction to the g-factor. Taking into consid-
eration the fact that the level repulsion in the orthogonal
ensemble suppresses the probability po of two levels being
very close, po�ei 2 ej� � p2jei 2 ejj�6d2 [6], we find
that the average value of the sum in Eq. (22) is logarith-
mically large:

��g�� � g0 2
pg0

12
h̄

dtso
ln

dtso

h̄
. (23)

The logarithmic divergence in Eq. (23) was cut off at
the energy scale jei 2 ejj �

p
d�tso, because of the

additional level repulsion caused by the weak spin-orbit
coupling.

Our results are summarized in Fig. 1. The lower
curve shows the dependence of the average g-factor on
the strength of the spin-orbit scattering in the case of a
diffusive nanoparticle. In the regime of 1�dtso ø 1 the
behavior is described by Eq. (23), and at 1�dtso ¿ 1
the average g-factor drops, in agreement with Eq. (5). In
the latter regime, ��g�� � �8�3p�1�2��g2��1�2, as one can
easily see from the distribution function (4).

The middle curve in Fig. 1 shows schematically the be-
havior of a ballistic nanoparticle, where all of the scattering
of electrons is due to the reflection from the boundaries
only. One can conduct a quantitative study in a simple
model of a spherical ballistic nanoparticle of radius L with
totally diffusive scattering off the boundaries. The result
amounts to replacing l ! 5L�8 in Eq. (5) and keeping a

the same as in the case of a diffusive sphere. Taking into
consideration the rapid decrease of the distribution func-
tion (4) of the g-factor at g2 ø ��g2��, one should con-
clude that the nanoparticles showing the values of g2 well
below the ballistic value ��g2�� � �3�4� �m�m��2 are most
likely in the diffusive regime. This is apparently the case
in the experiment [3]: as it follows from Eq. (5), the mea-
sured g � 0.3 value yields the boundaries l�L & 0.1 and
2792
tsod�h̄ & 0.05 for the mean free path and spin-orbit scat-
tering rate, respectively.

The top curve in Fig. 1 shows the behavior of the
g-factor in the case of a 2D quantum dot in a perpendicular
magnetic field. In accordance with Eq. (3), in the strong
spin-orbit scattering case, 1�dtso ¿ 1, the orbital moment
�lz� reaches a very large value �

p
kFl. In experiments

with quantum dots in GaAs heterostructures the orbital
effect should be further enhanced due to a small effective
mass m� � 0.067m of electrons, so one can expect to
find an independent of g0 value, ��g�� � �m�m��

p
kFl.

At weaker spin-orbit scattering, 1�dtso & 1, the orbital
enhancement of the g-factor is reduced.

Our discussion of the effects of spin-orbit scattering
on the g-factors of individual levels neglected electron-
electron interactions. In the mean-field approximation
we do not expect the interactions to affect our results. In
particular, the well-known exchange enhancement of the
g-factor occurs in the thermodynamic limit, and should
not affect the g-factors of individual quantum levels
defined by Eq. (1). On the other hand, in general the
electron-electron correlations scramble the picture of
single-electron levels used in this paper. However, for a
few lowest energy levels usually observed in the experi-
ment the single-electron picture is still valid [10], provided
the conductance of the grain is large compared to e2�h̄.
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